Removal of persistent pharmaceutical micropollutants from sewage by addition of PAC in a sequential membrane bioreactor.

نویسندگان

  • D Serrano
  • S Suárez
  • J M Lema
  • F Omil
چکیده

The performance of a membrane bioreactor operating in a sequential mode (SMBR) using an external flat-plate membrane was investigated. After 200 days of operation, a single addition of 1 g L(-1) Powdered Activated Carbon (PAC) was added directly into the mixed liquor in order to enhance the simultaneous removal of nutrients and pharmaceutical micropollutants from synthetic urban wastewater. Throughout the entire operation (288 days), Chemical Oxygen Demand (COD) removal efficiencies were up to 95%, ammonium nitrogen removal was maintained over 70-80%, whereas phosphorus removal achieved only high values (around 80%) after PAC addition. During the operation of the SMBR without PAC addition, micropollutants which exerted a more recalcitrant behaviour were carbamazepine, diazepam, diclofenac and trimethoprim, with no significant removal. On the other hand, moderate removals (42-64%) were observed for naproxen and erythromycin, whereas ibuprofen, roxithromycin and fluoxetine were removed in the range of 71-97%. The addition of PAC into the aeration tank was a successful tool to improve the removal of the more recalcitrant compounds up to 85%. The highest removal with PAC was observed for carbamazepine, trimethoprim as well as for roxithromycin, erythromycin and fluoxetine. The latter four compounds have amine groups and pKa in the range 6.7-10.1, thus the interaction between PAC and the positively charged amino groups might be the cause of their comparatively better results. Microbial ecology present in the biomass showed a higher abundance of Accumulibacter phosphatis as well as the ammonium oxidizing bacteria belonging to the genus Nitrosomonas after PAC addition.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison between sequential and simultaneous application of activated carbon with membrane bioreactor for trace organic contaminant removal.

The removal efficiency of 22 selected trace organic contaminants by sequential application of granular activated carbon (GAC) and simultaneous application of powdered activated carbon (PAC) with membrane bioreactor (MBR) was compared in this study. Both sequential application of GAC following MBR treatment (MBR-GAC) and simultaneous application of PAC within MBR (PAC-MBR) achieved improved remo...

متن کامل

Simultaneous activated carbon adsorption within a membrane bioreactor for an enhanced micropollutant removal.

Significant adsorption of sulfamethoxazole and carbamazepine to powdered activated carbon (PAC) was confirmed by a series of adsorption tests. In contrast, adsorption of these micropollutants to the sludge was negligible. The removal of these compounds in membrane bioreactor (MBR) was dependent on their hydrophobicity and loading as well as the PAC dosage. Sulfamethoxazole exhibited better remo...

متن کامل

Upgrading of Biological Treatment for Landfill Leachate by Nano-Membrane Systems

Treatment of landfill leachate is challenging, due to its characteristics such as age, dumping place, composition and origin of wastes. For this reason, the application of hybrid processes is helpful for complete treatment of contaminants present in the leachates. The addition of membrane operations to biological treatment technology offers new advantages for this method. For this aim, a bench-...

متن کامل

Performance of Membrane Bioreactor in Removal of Heavy Metals from Industrial Wastewater

Membrane technology is one of the few non-pollutant choices when selecting a treatment process. A membrane with suitable pore size can remove almost all pollutants without using any chemicals. In this research, chromium, zinc and lead were removed from synthetic wastewater by a membrane bioreactor. The results showed that by using a membrane bioreactor, the COD removal efficiency was increased ...

متن کامل

Treatment of Real Paper-Recycling Wastewater in a Novel Hybrid Airlift Membrane Bioreactor (HAMBR) for Simultaneous Removal of Organic Matter and Nutrients

In this study, a novel integrated Hybrid Airlift Membrane Bioreactor (HAMBR) composed of oxic, anoxic, and anaerobic zones was developed to simultaneously remove organic matter and nitrogen from real paper-recycling wastewater. The removal efficiencies of Chemical Oxygen Demand (COD), ammonium, nitrite, nitrate and Total Nitrogen (TN) for permeate and supernatant were in the range of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Water research

دوره 45 16  شماره 

صفحات  -

تاریخ انتشار 2011